Color transformation

process the components of a color image within the context of a single color model

Color can be described ( RGB system), or by linear transformation as XYZ, CMY.

image by some type of cylindrical-like coordinate system, it means by its hue, saturation and some value
representing brightness. If the RGB coordinates are in the interval from:0-te-1seach color can be
represented by the point in the cube in the RGB space.

we convert an image in some image processing applicationinto some brightness-hue-saturation model
and we would like to work with individual components as with separate images. There is desirable
regarding to the back conversion to have all combinations of the values. It means we need such model,
where the range of values of saturation is identical for all hues.



https://www.wisc-online.com/assetrepository/viewasset?id=1508
https://creativecommons.org/licenses/by-nc/3.0/

From this point of view, the GLHS color is probably the best from the current
ones, particularly for wmin = wmid = wmax = 1/3. The good model should satisfy some

demands as:

1-The brightness should be a linear combination of all three RGB components. At least, it
must be continuous growing function of all of them

2-The hue differences between the basic colors (R,G,B) should be 120- and similarly
between the complement colors (yellow, purple and cyan). The hue difference between a
basic color and an adjacent complement one (R ,Y) should be 60

» 3-The saturation should be 1 for the colors on the surface of the RGB color cube, it
means in case of one of the RGB componentsis 0 or 1 except black and white vertices

and itis 0 in case of R=G=B
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In our opinion, the best brightness, hue
and saturation system consists of the
brightness as linear combination of the
RGB values, the hue as actual angle in the
color cube and saturation as relative
distance from the body diagonal to the
surface of the color cube. Such a system,
called YHS, is presented in [1]. It satisfies
all three demands and makes easier some
color manipulations
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FIGURE 6.31
Adjusting the
intensity of an
image using color
transformations.
(a) Original
image. (b) Result
of decreasing its
intensity by 30%
(re..letting

k =0.7).

(¢c)—(e) The
required RGB,
CMY. and HSI
transformation
functions.
(Original image
courtesy of
MedData
Interactive.)
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 Example:

* Pixel values are triplets
(RGB, CMY, HSI) or quartets
(CMYK)

CMYK components of a full-color image
0: black, 1:white

‘ Black is confined to the coffee and
shadows of strawberries

Cyan image Magenta image Yellow imaé Black image

Strawberries are composed of large
amounts of magenta and yellow



Red image

RGB components of a full-color image
0: black, 1:white

Green image Blue image

Strawberries contain a large amount of red
and very little green and blue

54




HSI components of a full-color image

o — ‘ Strawberries are relatively pure in color
~and possess the highest saturation

Full color

Hue Saturation  Intensity

Intens'ity component is a monochrome
rendition of the full-color image




Color Complement:

Hues opposite one anotherin a color circle
are called complements

Click This is analogous to gray-scale negatives.

As in the grayscale case, this transformation is useful in
enhancing details embedded in dark portions of a color
image.

Complementation can be easily implemented in the
RGB space. However, there is no simple equivalent of this
in the HIS space. An approximation is possibleto add text

Magenta

Yellow

Red
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FIGURE 6.33
Color
complement
transformations.
(a) Original
image.

(b) Complement
transformation
functions.

(¢) Complement
of (a) based on
the RGB mapping
functions. (d) An
approximation of
the RGB
complement using
HSI
transformations.



- Matlab

RGB color space
A color image \(f \in \RR*{N \times 3}\) is made of three independent images, one for each channel red, green and blue (RGB color space).
Size \(n=n \times n\) of the image.
n = 256;
N =n*n;
Loading an image \(f \in \RR*{N \times 3}\).
name= 'hibiscus’;
f=rescale( load_image(name,n) );
One can display on screen a color image in RGB space using the rule of additive color mixing.
Display the image \(f\) and the three channels that compose the colors.
R = cat(3, f(:,:,1), zeros(n), zeros(n));
G = cat(3, zeros(n), f(:,:,2), zeros(n));
B = cat(3, zeros(n), zeros(n), f(:,:,3));
clf;
Imageplot({f R G B}, ...
{'f"'R (red)' 'G (green)' 'B (blue)'}, 2, 2);
It is possible to obtain a grayscale image from a color image by linear averaging of the channels, to obtain the luminance channel \[ L = \frac{r+g+b}{3} \]
clf;
imageplot({f mean(f,3)}, {'f' 'L'});



R (Red)

B (blue)
G [green)




CMY Color Space

Another popular representation for color images uses as basis colors the cyan, magenta and yellow
(CMY color space). They are computed as \[ C=1-R, \quad f=1-G, \quad Y=1-B. \]

One can display on screen a color image in CMY space using the rule of substractive color mixing.
Show the C, f, Y channels.

f1 =cat(3,f(:,:,1), f(:,:,2)*0+1, f(:,:,3)*0+1);
f2 = cat(3, f(:,:,1)*0+1, f(:,:,2) , f(:,:,3)*0+1);
f3 = cat(3, f(:,:,1)*0+1, f(:,:,2)*0+1, 1(:,:,3));
clf;
imageplot({f f1 f2 3}, ...

{'f'C''f''Y'}, 2, 2);
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Value = @(f)sum(f, 3) / sqrt(3);

A =@(f)( f(::2)-(::.3) ) /sart(2);
B =@(f)( 2*f(::, 1) - f(2.2,2) - f(:,2.3) ) /sart(6):

T=[ 1/sqgrt(3) 1/sqgrt(3) 1/sart(3);...
O 1/sqrt(2) -1/sqrt(2); ...

2/sqgrt(6) -1/sqgrt(6) -1/sqrt(6)];

Saturation = @(f)sart( A(f).A2 + B(f).A2);
Hue = @(f)atan2(B(f),A(f));

rgb2hsv1 = @(fjcat(3, Hue(f), Saturation(f), Value(f));

g =rgb2hsv(f);
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Noise Iin color images

Is random variation of brightness or color information in images
It can be produced by the image sensor and circuitry of a scanner or digital camera
Image noise can also originate in film grain .

noise affects all the three color components. Usually, across the three color channels, the noise is
independent and its statistical characteristic are identical

Noise filtering by means of a simple averaging can be accomplished by performing the operation
independently on the R, G, and B channels and combining the results.



important to understand here is that these fluctuations are not a part of the signal and instead

e Noise is a byproduct of irregular signal fluctuations that accompany a transmitted signal. What’s
obscure the intended target.

Thus, one of the most crucial tasks in imaging is finding a solution to create a strong signal with a
minimum amount of noise beside it. Unfortunately, finding a solution often proves to be a
significant challenge in imaging, particularly in a low-light situation where the signal is already low.
When dealing with image noise, the first step is to identify the type of noise you’re encountering.




Noise types

Temporal noise: completely random and results from variations in generating a
digital value from a single pixel by converting incoming photons into electrons

Spatial noise: Variations in an individual pixel typically cause spatial noise and are
therefore not random. This noise type is often referred to as "non-uniformities"
because the term noise itself implies a random process. EMVA1288 uses the term
"non-uniformity

variations between the pixel can also be caused by temporal noise. The various
forms of spatial noise are only observable when minimizing the temporal noise




Image 3: Averaging images together to reduce the presence of noise.



VS.

Color noise is created and amplified during the generation of color information. Essentially, a single-pixel captures only
color information for a specific band of the light spectrum (e.g., Red, Green, or Blue).

Color noise is attributed to a process known as demosaicing. Essentially, the missing color information is interpolated
from a neighboring pixel to ensure Red, Green, and Blue are obtained in each pixel.

The typical color noise scenario in imaging is strong noise in the channel and lower noise in

channels. The intense noise in the blue channel will also affect the other channels due to demosaicing

It's important to note that the human observer is much more sensitive to intensity noise than color noise. Nevertheless,
intense color noise can still be disturbing to the overall image quality.



Noise sources

differentiate into two primary noise
sources:

1- Photon-Shot noise

2-Read noise.




Photon-shot noise °

* The photon-shot noise refers to the noise of the light itself.

* If we imagine light as a flow of photons, this flow is not perfectly constant over time. To co icture an instrument
that measures rain on a small surface. If we have heavy rain, we can accurately provide a number that is the average for the
surface per time interval. However, very light rain will only show a few drops per time interval and change rapidly for the
various measurements.

* The same idea from the rain example applies to photon-shot noise. The ratio of signal to noise (SNR) equals the signal's
square root for photon-shot noise. Put simply, the more photons we have, the better the SNR and vice versa.






Read noise

Read noise is a summary of multiple types of noise sources within the reading
process of the sensor .

In many cases, the noise is constant, so the lower the signal, the worse the SNR. Likewise, the lower the number of photons, the
lower the SNR.

When we plot the SNR vs. the number of photons per pixel per exposure, we can differentiate the SNR into two regions:

Read-noise limited: Occurs when the read noise is so intense that the SNR is significantly lower than the lowest SNR that
appears from the photon shot noise.

Photon shot noise limited: Occurs when the measured SNR is just slightly below the highest SNR that you can reach with the
photon shot noise.



Read noise

Read noise is a summary of multiple types of noise sources within the reading
process of the sensor.

In many cases, the noise is constant, so the lower the signal, the worse the SNR. Likewise, the
lower the number of photons, the lower the SNR.

When we plot the SNR vs. the number of photons per pixel per exposure, we can differentiate the
SNR into two regions:

Read-noise limited: Occurs when the read noise is so intense that the SNR is significantly lower
than the lowest SNR that appears from the photon shot noise.

Photon shot noise limited: Occurs when the measured SNR is just slightly below the highest SNR
that you can reach with the photon shot noise.



matlab

1.a = imread('D:\ben.png');

2.figure,imshow(a)

3.%%% %% % % % % %% % % % % % % % % %% % % % % % % %% %% % % % N 0is e %% % % % % % % % % % % % % % % % % % % % % % % % % % % % %% % % % % %
4.% 1. Salt and pepper noise

5.al = imnoise(a,'salt & pepper',0.2); %0.2 is the noise ratio
6.figure,imshow(al)

7.%Then convert matrix from 3D to 2D

8.c = permute(al, [1 2 3]);

9.c =reshape(c, [], size(al,2), 1);

10.%To remove the noise using median filter (The best filter)
11.a2 = medfilt2(c, [5 5]);

12 .figure,imshow(a2)

13.%To remove the noiseLow pass filter (disadvantage: increase the brightness)
14.a3 = fspecial('average');

15.a4 =filter2(a3,c);

16.figure,imshow(a4)

17.%%%% %% %% %% % % % % % %% %% % % % % % %% %% % % %
18.%2. Gaussian noise

19.a1 = imnoise(a, 'gaussian');

20.figure,imshow(al)

21.%Then convert matrix from 3D to 2D



c = permute(al, [1 2 3]);
c =reshape(c, [], size(al.2), 1);
%to remove the noise using median filter (the best filter)
a2 = medfilt2(c, [5 5]);
figure,imshow(a2)
%to remove the noise using mean filter
a3 = mean(c,3);
figure,imshow(a3)
T6%6 %0 %0 %o ToToTo %o %o %o %o To To To %6 %6 To T T %o o To
%3. speckle noise
al = imnoise(aq, 'speckle');
imshow(al)
%then convert matrix from 3d to 2d
c = permute(al, [1 2 3]);
c =reshape(c, [], size(al,2), 1);
%to remove the noise using median filter (the best filter)
a2 = medfilt2(c, [5 5]);
figure,imshow(a2)
T6% %0 %0 %o %o ToTo %o To To To To To To To To To To To To o To
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